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Abstract-On-demand routing protocols use route caches to make 
routing decisions. Due to mobility, cached routes easily become 
stale. To address the cache staleness issue, prior work in DSR 
used heuristics with ad hoc parameters to predict the lifetime of a 
link or a route. However, heuristics cannot accurately estimate 
timeouts because topology changes are unpredictable. In this 
paper, we propose proactively disseminating the broken link 
information to the nodes that have that link in their caches. We 
define a new cache structure called a cache table and present a 
distributed cache update algorithm. Each node maintains in its 
cache table the information necessary for cache updates. When a 
link failure is detected, the algorithm notifies all reachable nodes 
that have cached the link in a distributed manner. The algorithm 
does not use any ad hoc parameters, thus making route caches 
fully adaptive to topology changes. We show that the algorithm 
outperforms DSR with path caches and with Link-MaxLife, an 
adaptive timeout mechanism for link caches. We conclude that 
proactive cache updating is key to the adaptation of on-demand 
routing protocols to mobility. 

Keywords: Mobile ad hoc networks, On-demand routing 
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1. INTRODUCTION

In a mobile ad hoc network, nodes move 
arbitrarily. Mobility presents a fundamental challenge to 
routing protocols. Routing protocols for ad hoc networks 
can be classified into two major types: proactive and on-
demand. Proactive protocols attempt to maintain up-to-date 
routing information to all nodes by periodically 
disseminating topology updates throughout the network. In 
contrast, ondemand protocols attempt to discover a route 
only when a route is needed. To reduce the overhead and 
the latency of initiating a route discovery for each packet, 
on-demand routing protocols use route caches. Due to 
mobility, cached routes easily become stale. Using stale 
routes causes packet losses, and increases latency and 
overhead. In this paper, we investigate how to make on-
demand routing protocols adapt quickly to topology 
changes. This problem is important because such protocols 
use route caches to make routing decisions; it is 
challenging because topology changes are frequent. 

To address the cache staleness issue in DSR (the 
Dynamic Source Routing protocol) [6], [8], prior work [4], 
[11], [9] used adaptive timeout mechanisms. Such 
mechanisms use heuristics with ad hoc parameters to 
predict the lifetime of a link or a route. However, a 
predetermined choice of ad hoc parameters for certain 
scenarios may not work well for others, and scenarios in 
the real world are different from those used in simulations. 
Moreover, heuristics cannot accurately estimate timeouts 
because topology changes are unpredictable. As a result, 

either valid routes will be removed or stale routes will be 
kept in caches. 

To evict stale routes faster, DSR with path caches 
uses a small cache size. However, as traffic load or network 
size increases, small caches will cause route re-discoveries, 
because more routes need to be stored, but small caches 
cannot hold all useful routes. If the cache size is set large, 
more stale routes will stay in caches because FIFO 
replacement becomes less effective. It was shown that path 
caches with unlimited size perform much worse than 
caches with limited size, due to the large amount of 
ROUTE ERRORS caused by the use of stale routes [4]. 

In this paper, we propose proactively 
disseminating the broken link information to the nodes that 
have that link in their caches. Proactive cache updating is 
key to making route caches adapt quickly to topology 
changes. It is also important to inform only the nodes that 
have cached a broken link to avoid unnecessary overhead. 
Thus, when a link failure is detected, our goal is to notify 
all reachable nodes that have cached the link about the link 
failure. 

We define a new cache structure called a cache 
table to maintain the information necessary for cache 
updates. A cache table has no capacity limit; its size 
increases as new routes are discovered and decreases as 
stale routes are removed. Each node maintains in its cache 
table two types of information for each route. The first type 
of information is how well routing information is 
synchronized among nodes on a route: whether a link has 
been cached in only upstream nodes, or in both upstream 
and downstream nodes, and neither. The second type of 
information is which neighbor has learned which links 
through a ROUTE REPLY. Thus, for each link in a node’s 
cache, the node knows which neighbor nodes have cached 
that link. Therefore, topology propagation state, the 
information necessary and sufficient to remove stale routes, 
is kept in a distributed manner. 

We design a distributed algorithm that uses the 
information kept by each node to achieve distributed cache 
updating. When a link failure is detected, the algorithm 
notifies selected neighborhood nodes about the broken link: 
the closest upstream and/or downstream nodes on each 
route containing the broken link, and the neighbors that 
learned the link through ROUTE REPLIES. When a node 
receives a notification, the algorithm notifies selected 
neighbors. Thus, the broken link information will be 
quickly propagated to all reachable nodes that need to be 
notified. 
Our algorithm has the following desirable properties: 
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 Distributed: The algorithm uses only local information 
and communicates with neighborhood nodes; therefore, 
it is scalable with network size. 

 Adaptive: The algorithm notifies only the nodes that 
have cached a broken link to update their caches; 
therefore, cache update overhead is minimized. 

 Proactive on-demand: Proactive cache updating is 
triggered on-demand, without periodic behavior. 

 Without ad hoc mechanisms: The algorithm does not 
use any ad hoc parameters, thus making route caches 
fully adaptive to topology changes. 
Each node gathers the information about which node 

learns which link through forwarding packets, not through 
promiscuous mode, which is an optimization for DSR [10]. 
To handle situations where promiscuous mode is used, we 
combine our algorithm and the secondary cache used in 
DSR with path caches, without any modification to the 
algorithm. 

We evaluate the algorithm with and without 
promiscuous mode through detailed simulations. We show 
that, under non-promiscuous mode, the algorithm 
outperforms DSR with path caches by up to 19% and DSR 
with Link-MaxLife [4] by up to 41% in packet delivery 
ratio. Under promiscuous mode, the algorithm improves 
packet delivery ratio by up to 7% for both caching 
strategies and reduces latency by up to 27% for DSR with 
path caches and 49% for DSR with Link-MaxLife. 

Our contributions are threefold. First, we addressed the 
cache updating issue of on-demand routing protocols. 
Second, we show that proactive cache updating is more 
efficient than adaptive timeout mechanisms. Finally, we 
conclude that proactive cache updating is key to the 
adaptation of ondemand routing protocols to mobility. 
 

2. RELATED WORK 
Maltz et al. [10] were the first to study the cache 

performance of DSR. They found that the majority of 
ROUTE REPLIES are based on cached routes, and only 
59% of ROUTE REPLIES carry correct routes. They also 
observed that even ROUTE REPLIES from the target are 
not 100% correct, since routes may break while a ROUTE 
REPLY is sent back to the source node. They concluded 
that efficient route maintenance is critical for all routing 
protocols with route caches. 

Holland and Vaidya [3] showed that stale routes 
degrade TCP performance. They observed that TCP 
experiences repeated route failures due to the inability of a 
TCP sender’s routing protocol to quickly recognize and 
remove stale routes from its cache. This problem is 
complicated by allowing nodes to respond to route 
discovery requests with routes from their caches, because 
they often responds with stale routes. Perkins et al. [14] 
showed the impact of stale routes on DSR. 

Hu and Johnson [4] studied the design choices for 
cache structure, cache capacity, and cache timeout. They 
proposed several adaptive timeout mechanisms for link 
caches. In Link-MaxLife [4], the timeout of a link is chosen 
according to a stability table in which a node records its 
perceived stability of each other node. A node chooses the 
shortest-length path that has the longest expected lifetime. 

When a link is used, the stability metric for both endpoints 
is incremented by the amount of time since the link was last 
used, multiplied by some factor. When a link is observed to 
break, the stability metric for both endpoints is 
multiplicatively decreased by a different factor. Link-
MaxLife was shown to outperform other adaptive timeout 
mechanisms. 

AODV (the Ad hoc On-demand Distance Vector 
routing protocol) [12], [13] uses a precursor list for 
ROUTE ERROR reporting. For each route table entry, a 
node maintains a list of precursors that may be forwarding 
packets on this route. The list of precursors contains those 
neighboring nodes to which a ROUTE REPLY was 
generated or forwarded. These precursors will receive 
notifications from the node when the next hop link is 
detected as broken. Each time a route table entry is used, its 
lifetime is updated to be the current time plus a fixed 
parameter. When a route table entry is expired, the 
precursor list associated with the entry will be removed. 
The precursor list is designed with a similar goal as our 
ReplyRecord, but there are two main differences between 
precursors and our mechanism. First, we do not use 
timeouts for cache table entries and ReplyRecord entries. 
Second, precursors keep track of the nodes recently using 
some route; once a route table entry is expired, precursors 
that have not used or did not recently use that route will not 
be tracked. In contrast, our mechanism completely keeps 
track of topology propagation state in a distributed manner. 
 

3. THE DYNAMIC SOURCE ROUTING PROTOCOL 
A. Overview of DSR 

DSR consists of two on-demand mechanisms: 
Route Discovery and Route Maintenance. When a source 
node wants to send packets to a destination to which it does 
not have a route, it initiates a Route Discovery by 
broadcasting a ROUTE REQUEST. The node receiving a 
ROUTE REQUEST checks whether it has a route to the 
destination in its cache. If it has, it sends a ROUTE REPLY 
to the source including a source route, which is the 
concatenation of the source route in the ROUTE 
REQUEST and the cached route. If the node does not have 
a cached route to the destination, it adds its address to the 
source route and rebroadcasts the ROUTE REQUEST. 
When the destination receives the ROUTE REQUEST, it 
sends a ROUTE REPLY containing the source route to the 
source. Each node forwarding a ROUTE REPLY stores the 
route starting from itself to the destination. When the 
source receives the ROUTE REPLY, it caches the source 
route. 

In Route Maintenance, the node forwarding a 
packet is responsible for confirming that the packet has 
been successfully received by the next hop. If no 
acknowledgement is received after the maximum number 
of retransmissions, the forwarding node sends a ROUTE 
ERROR to the source, indicating the broken link. Each 
node forwarding the ROUTE ERROR removes from its 
cache the routes containing the broken link. 
B. Route Caching in DSR 

DSR uses path caches [1] or link caches [4]. In a 
path cache, a node stores each route starting from itself to 
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another node. In a link cache, a node adds a link to a 
topology graph, which represents the node’s view of the 
network topology. Links obtained from different routes can 
form new routes. Thus, link caches provide more routing 
information than path caches. 

A node learns routes through forwarding ROUTE 
REPLIES and data packets, or by overhearing packets 
when promiscuous mode is used [10]. DSR does not cache 
the source route accumulated in a ROUTE REQUEST, 
since ROUTE REQUESTS are broadcast packets and thus 
links discovered may not be bi-directional [8]. Due to the 
same reason, when a node forwards a ROUTE REPLY, it 
caches only the links that have been confirmed by the MAC 
layer to be bi-directional [8], which are the downstream 
links starting from the node to a destination. When 
forwarding a data packet, a node caches the upstream links 
as a separate route. After initiating a Route Discovery, a 
source node may learn many routes returned either by 
intermediate nodes or by the destination; it will cache all 
those routes. Thus, DSR aggressively caches and uses 
routing information. 

Besides Route Maintenance, DSR uses two 
mechanisms to remove stale routes. First, a source node 
piggybacks on the next ROUTE REQUEST the last broken 
link information, which is called a GRATUITOUS ROUTE 
ERROR. Although this optimization helps remove stale 
routes from more caches, GRATUITOUS ROUTE 
ERRORS are not able to reach all nodes whose caches 
contain the broken link, because some ROUTE 
REQUESTS will not be further propagated due to the use 
of responding to ROUTE REQUESTS with cached routes. 
Second, DSR uses heuristics: a small cache size with FIFO 
replacement for path caches and adaptive timeout 
mechanisms for link caches [4], where link timeouts are 
chosen based on observed link usages and breakages. 
 
4. THE DISTRIBUTED CACHE MODERNIZING ALGORITHM 

In this section, we first describe the cache 
staleness issue. We then give the definition of a cache table 
and present two algorithms used to maintain the 
information for cache updates. Finally, we describe our 
distributed cache update algorithm in detail. 
A. Problem Statement 

On-demand Route Maintenance results in delayed 
awareness of mobility, because a node is not notified when 
a cached route breaks until it uses the route to send packets. 
We classify a cached route into three types: 

 pre-active, if a route has not been used; 
 active, if a route is being used; 
 post-active, if a route was used before but now is 

not. 
It is not necessary to detect whether a route is active or 

post-active, but these terms help clarify the cache staleness 
issue. Stale pre-active and post-active routes will not be 
detected until they are used. Due to the use of responding to 
ROUTE REQUESTS with cached routes, stale routes may 
be quickly propagated to the caches of other nodes. Thus, 
pre-active and post-active routes are important sources of 
cache staleness. 

We show an example of the cache staleness issue. In 
Figure 1, assume that route ABCDE is active, route 
FGCDH is post-active, and route IGCDJ is pre-active. Thus, 
node C has cached both the upstream and the downstream 
links for the active and post-active routes, but only the 
downstream links, CDJ, for the pre-active route. When 
forwarding a packet for source A, node C detects that link 
CD is broken. It removes stale routes from its cache and 
sends a ROUTE ERROR to node A. However, the 
downstream nodes, D and E, will not know about the 
broken link. Moreover, node C does not know that other 
nodes also have cached the broken link, including all the 
nodes on the post-active route, F, G, D, and H, and the 
upstream nodes on the pre-active route, I and G. 

 
Fig.1. An Example of Routing Caching in DSR. 

B. Assumption 
Promiscuous mode [10] disables the network 

interface’s address filtering function and thus causes a 
protocol to receive all packets overheard by the interface. 
Since it is impossible to know which neighbor overhears 
which link, we do not maintain such information in a cache 
table. To handle promiscuous mode, we use a secondary 
cache to store overhead routes, without any modification to 
the cache update algorithm. 
C. The Definition of a Cache Table 

It was shown that no single cache size provides 
the best performance for all mobility scenarios [4]. Thus, 
we design a cache table that has no capacity limit. Without 
capacity limit allows DSR to store all discovered routes and 
thus reduces route discoveries. The cache size increases as 
new routes are discovered and decreases as stale routes are 
removed. 
There are four fields in a cache table entry: 
 Route: It stores the links starting from the current node 

to a destination or from a source to a destination. 
 SourceDestination: It is the source and destination pair. 
 DataPackets: It records whether the current node has 

forwarded 0, 1, or 2 data packets. It is 0 initially, 
incremented to 1 when the node forwards the first data 
packet, and incremented to 2 when it forwards the 
second data packet. 

 ReplyRecord: This field may contain multiple entries 
and has no capacity limit. A ReplyRecord entry has 
two fields: the neighbor to which a ROUTE REPLY is 
forwarded and the route starting from the current node 
to a destination. A ReplyRecord entry will be removed 
in two cases: when the second field contains a broken 
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link, and when the concatenation of the two fields is a 
sub-route of the source route, which starts from the 
previous node in the source route to the destination of 
the data packet. 

 
5. PERFORMANCE EVALUATION 

A. Evaluation Methodology 
We compared our algorithm called DSR-Update to 

DSR with path caches and with Link-MaxLife under both 
promiscuous and non-promiscuous mode. When 
promiscuous mode (also called tapping) was not used, we 
did not use GRATUITOUS ROUTE REPLIES since it 
relies on this mode. For DSRUpdate without promiscuous 
mode, we did not use GRATUITOUS ROUTE ERRORS, 
since we wanted to use the algorithm as the only 
mechanism to remove stale routes. When promiscuous 
mode was used, we used all optimizations for the three 
caching strategies. 
B. Simulation Results 
1) Packet Delivery Ratio: Figure 13 (a)–(c) show packet 
delivery ratio. Without promiscuous mode, DSR-Update 
outperforms DSR with path caches by up to 19% and Link-
MaxLife by up to 41%. The improvement increases as 
mobility, traffic load, or network size increases. As 
mobility increases, more routes will become stale; therefore, 
the advantages of fast cache updating become more 
significant. As traffic load increases, stale routes will 
adversely affect more traffic sources; proactive cache 
updating reduces packet losses from more sources. 
Proactive cache updating is also important for large 
networks, because as network size increases, more nodes 
will cache stale routes. 
2) Packet Delivery Latency: Figure 14 shows packet 
delivery latency. Without promiscuous mode, DSR-Update 
reduces latency by up to 54% of DSR with path caches. 
Since detecting link failures is the dominant factor of 
delivery latency, the reduction in latency further 
demonstrates the effectiveness of the algorithm. Moreover, 
the reduction increases as mobility, traffic load, or network 
size increases, because quick removing stale routes reduces 
link failure detections by multiple flows. 
 

6. CONCLUSIONS 
In this paper, we presented the first work that 

proactively updates route caches in an adaptive manner. 
We defined a new cache structure called a cache table to 
maintain the information necessary for cache updates. We 
presented a distributed cache update algorithm that uses the 
local information kept by each node to notify all reachable 
nodes that have cached a broken link. The algorithm 
enables DSR to adapt quickly to topology changes. 

We show that, under non-promiscuous mode, the 
algorithm outperforms DSR with path caches by up to 19% 
and DSR with Link-MaxLife by up to 41% in packet 
delivery ratio. It reduces normalized routing overhead by 
up to 35% for DSR with path caches. Under promiscuous 
mode, the algorithm improves packet delivery ratio by up 
to 7% for both caching strategies, and reduces delivery 
latency by up to 27% for DSR with path caches and 49% 
for DSR with Link-MaxLife. The improvement 

demonstrates the benefits of the algorithm. Although the 
results were obtained under a certain type of mobility and 
traffic models, we believe that the results apply to other 
models, as the algorithm quickly removes stale routes no 
matter how nodes move and which traffic model is used. 

The central challenge to routing protocols is how 
to efficiently handle topology changes. Proactive protocols 
periodically exchange topology updates among all nodes, 
incurring significant overhead. On-demand protocols avoid 
such overhead but face the problem of cache updating. We 
show that proactive cache updating is more efficient than 
adaptive timeout mechanisms. Our work combines the 
advantages of proactive and on-demand protocols: on-
demand link failure detection and proactive cache updating. 
Our solution is applicable to other on-demand routing 
protocols. We conclude that proactive cache updating is 
key to the adaptation of on-demand routing protocols to 
mobility. 
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